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SUMMARY

/%‘XX’?

An investigation has been conducted in the Langley transonic blowdown tunnel
to determine the effects of variations in Mach number, nose bluntness, fineness
ratio, cone semiangle, and base shape on the static longitudinal characteristics
of low-fineness-ratio blunted cones. The tests were made at Mach numbers from
about 0.8 to 1.2 through an angle-of-attack range that generally varied from O°

to 180°. Reynolds number, based upon the base diameter, varied from 3.67 X 10
to 5.32 x 106.

The results of the investigation indicate that all shapes tested have a
stable trim point at an angle of attack of 180° that is undesirable for a passive
entry body designed to enter along a purely ballistic path. Variations in Mach
number, nose bluntness, cone semiangle, and base shape had no significant effect
on the static stability, but increases in fineness ratio caused decreases in sta-
bility at angles of attack up to 45° with the moment reference center located at
two-thirds of the body length from the nose. Increases in fineness ratio and
decreases in cone semiangle generally caused an increase in normal force over most
of the test angle-of-attack range. Variations in nose bluntness and base shape
had little or no effect on normal-force coefficient. At angles of attack up to
about 160°, increases in fineness ratio generally caused a reduction in the abso-
lute values of axial force. In general, variations in cone semiangle had little
effect on axial force, except at angles of attack near 0° at Mach numbers of 0.8
and 1.2 and near 90° at M = 0.8. Variations in nose bluntness and base shape
below 80° angle of attack had little or no effect on axial force, but at angles
of attack from 80° to 1800, varying the base shape from convex to concave caused,
in general, a large increase in the absolute values of axial force.

INTRODUCTION

The National Aeronautics and Space Administration is conducting an investi-
gation to obtain systematic information from low subsonic to hypersonic speeds on




bodies of a type that can be used for unmanned, passive, planetary probes. The
selection of a shape for this type of probe must take into account the effects of
the geometric parameters that influence not only the heating problems but also the
static and dynamic stability. For blunt, low-fineness-ratio cones (a type consid-
ered for a Venus or Mars passive probe), the important geometric parameters
include nose bluntness, base shape, cone semiangle, and body fineness ratio. The
stability of the vehicle should be such that the vehicle will assume and remain

in a nose-forward attitude (a = 0°) during the entire entry phase even though
initial entry may be made at angles of attack up to 180°.

This paper presents the results of a transonic investigation of low-fineness-
ratio blunted cones intended for use primarily as unmanned planetary probes. The
results show the effect of variations in nose bluntness, cone semiangle, base
shape, and fineness ratio on the static longitudinal aerodynamic characteristics.
The tests were made in the 26-inch Langley transonic blowdown tunnel at Mach num-
bers from about 0.8 to 1.2 through an angle-of-attack range that generally varied
from 0° to 180°. Reference 1 presents the results of tests at supersonic speeds
at angles of attack to 180° on bodies essentially identical to those of the pres-
ent tests. Results showing the effects of variations in some of the geometric
parameters mentioned on the longitudinal aerodynamic characteristics of other
blunt ballistic bodies over various low angle-of-attack ranges at transonic speeds
are presented in references 2 through 5.

SYMBOLS

The force- and moment-coefficient data are referenced to both the stability
and body systems of axes. The coordinate origin was taken on the body axis of
symmetry at a point 66.6 percent of the body length from the nose.

a diameter of front face of theoretical cone frustum, in.
b diameter of flat area on model nose, in.
c longitudinal length of conical afterbody, in.
Ca axial-force ccoefficient, Axial force
q A
CD drag coefficient, Drag
qu
cr 1ift coefficient, =it
q A
Pitchi t
Cn pitching-moment coefficient, = g oonen

qud




Cm/CN

]

2]

>

longitudinal center-of-pressure location, fraction of base diameter
from moment reference center

Normal force

qu

normal-force coefficient,

reference length (maximum diameter at base of cone), in.

lift-drag ratio, Cp[Cp

nose bluntness factor, b/a (fig. 1)

length of model, nose to flat base (fig. 1), in.
free-stream Mach number

free-stream dynamic pressure, lb/sq in.
nose-edge radius, in.

radius of spherical base, 1.25d4, in.

2
reference area, area of flat base, E%—, sq in.

angle of attack, deg
fineness ratio, 1/d

cone semiangle, deg

MODELS

d,

The geometrical description of a typical model is shown in figure 1 and the

dimensions for the nine configurations tested are listed in table I.
of the models are shown as figure 2.

digit code as follows:

(a) First digit gives nose-bluntness
factor K:

ratio A:
F%r§t K S?c?nd A
digit digit
1 0 (spherical) 1 0.50
2 «50 2 .75
5 ) ) 1.00

Photographs
The configurations are identified by a four-

(b) Second digit gives fineness



(d) Fourth digit gives base shape:
S | snere
1 Flat
2 Convex
3 Concave

(¢) Third digit gives cone semi-
angle
must [, ae
1 10
2 15
3 20

=N

AF

-

Figure 1l.- Sketch showing geometric param-
eters of planetary entry models.

Example: Configuration 1221 has a spheri-
cal nose, fineness ratio of 0.75, cone
semiangle of 15°, and a flat base. For
each configuration, there were two or three
models which were identical in shape except
for the position of the balance-mounting
hole. (See fig. 3.) All models were made
of polished stainless steel and had h_inch-
diameter bases, except configuration 1121
mounted at 90° to the sting. This partic-
ular model, used for tests at angles of
attack from 44° to 137°, was a l.5-scale
model of the nose- and base-mounted models
and was made of aluminum. (See fig. 2(b).)
This larger size model of configuration
1121 was necessary to provide sufficient
balance-mounting space.

The basic configuration was designated
1221. The variations from this configura-
tion were: two flat-nosed configurations,
2221 and 3221; two different fineness-ratio

configurations, 1121 and 1321; two different cone-semiangle configurations, 1211
and 1231; and two different base-shape configurations, 1222 and 1223. (see

fig. 2.)

APPARATUS AND TESTS

The tests were made in the Langley transonic blowdown tunnel which has a

slotted octagonal test section measuring 26 inches between flats.

Model forces

and moments were measured with a six-component internal strain-gage balance and

recorded on pen-type strip recorders.

The pressures necessary to determine

dynamic pressure and Mach number were obtained on quick-response flight-type

recorders.




(a) Base-mounted models (-1° € o S 47°). L-62-6092
9

L-62-6093

L-62-6090

Concave

1223

(d) Base shapes. L-62-6091

Figure 2.- Photographs of models showing shapes and mounting holes.




TABLE I.- GEOMETRIC PARAMETERS OF LOW-FINENESS-RATTO

BLUNTED-CONE PLANETARY-ENTRY MODELS

Confzggzation a, in.|b, in.|?, in.|d, in.|c, in. *r, in.| 9, deg Base
1221 2.392 0 3 L 1.845| 1.559 15 Flat
2221 2.392 | 1.196 3 b 2.423| .779 15 Flat
3221 2.392 |1.794 | 3 L 2.711| .390 15 Flat
1121 2.928 0 2 L 5871 1.907 15 Flat
1121 (large) u.ggg 0 E E .880| 2.861 15 Flat
1321 1. 0 3.103| 1.210 15 Flat
1211 2.942 0 3 4 1.550( 1.753 10 Flat
1231 1.816 0 3 k4 2.147{ 1.297 20 Flat

1222 2.392 0 3 4 1.845( 1.559 15 |[Convex (R = 5 in.)

| 1223 2.392 0 3 L 1.845| 1.559 15 |Concave (R = 5 in.)

*Spherical when b

equals zero.

Base mounted

-l as 47

=3

Top mounted

=

Nose mounted

134= o = 180°

Figure 3.- Sketch showing typical model in the
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four mounting positions for the different
angle-of-attack ranges.

Balance angles of attack from
0° to 21° and from 25° to 45° were
obtained with a straight sting and a
25° bent sting, respectively. The
model angle-of-attack range of 0° to
180° was obtained by mounting the
models at 0°, 90°, and 180° relative
to the longitudinal axis of the bal-
ance. (See fig. 3.) Table II indi-
cates the sting used and the model-
mounting position for each angle-of-
attack range. For these sting and
model combinations, the model angle
of attack was always increased posi-
tively during each test run. Data
were obtained for each confilguration
at about 3° increments for angles of
attack from 0° to 21° and in 5° incre
ments for angles of attack from 25°
to 180°. The convex- and concave-
base configurations and the two flat-
nose configurations were not tested
at angles of attack from 0° to 45°
and from 135° to 180°, respectively.
For these angles of attack, the
effect of base shape or nose shape o1
the static longitudinal aerodynamic
characteristics was believed to be
negligible.

The basic configuration 1221 wai
tested at nominal Mach numbers of




0.80, 0.90, 0.95, 1.00, and 1.20. The
other configurations were tested at nomi-
nal Mach numbers of 0.80 and 1.20 only.
The Mach numbers are referred to as nomi-
nal because the Mach numbers varied with
angle of attack. This variation was due
to the fact that the tunnel was operated
at a constant stagnation pressure and the
tunnel blockage caused by the sting sup-
port, sting, and model varied with angle
of attack. Measured Mach numbers at the
beginning and end of each angle-of-attack
range are given in table III. Stagnation
pressure was held at 35 pounds per square
inch absolute, except for a few runs on

TABLE II.- STING AND MODEL-MOUNTING POSITION

Angle-of ~attack |Sting angle, Model-mounting
range, deg deg position
0 to 21 0] 0° to balance
25 to 45 25 (bent) (base mounted)
4 to 65 25 (bent)
69 to 90 0 90° to balance
90 to 111 0 (top mounted)
115 to 135 25 (bent)
134 to 155 25 (bent) 180° to balance
159 to 180 0 (nose mounted)

the 1.5-scale model of configuration 1121, which were made at a stagnation pres-

sure of 30 pounds per square inch absolute to reduce the balance loads and to keep
the Reynolds number approximately the same as that of the smaller models.

The

Reynolds number for the tests, based on the base diameter, varied from 3.67 X 106

to 5.32 x 100.

wall-reflected bow shock would clear the models.

Calculations using the method of reference 6 indicated that the

TABLE III.- TEST MACH NUMBERS AT FIRST AND LAST TEST POINTS IN ANGLE-OF-ATTACK RANGE
. First and last value of in « ranges betwe -
Configuration Nominal i e Average
M, 219, 21° | 250, W7 | WO, 65° | 69°, 90° (899, 111° |115°, 137°|134°, 155°|160°, 180° | M,
0.80(0.79, 0.79|0.82, 0.81|0.82, 0.81]0.81, 0.81|0.81, 0.80(0.83, 0.8%|0.81, 0.82[0.82, 0.81| 0.81
.90| .90, .87 .91, .89| .91, .93| .90, .89 .91, .89| .93, .92| .91, .90} .91, .89| .90
1221 295] 9%, 93| .97, .95 .96, .9T7| .95, .96 s 93| .98, .96| .96, .95| .98, .95{ .96
1.00| .98, .97{1.03, .99|L.01, 1.01(1.00, 1.03(1.02, 1.01|1.03, 1.01|1.01, 1.01|1.0%, 1.00| 1.00
1.20|1.20, 1.20|1.21, 1.20 (1.21, 1.22|1.19, 1.20il.20, 1.20|1.24, 1.22(1.21, 1.21{1.21, 1.20 | 1.21
2021 .Boj .8o, .79 .82, .B2| .83, .83 .82, .81| .82, .81] .84, .B3|-ecommcm|mmmamoas .82
1.20{1.20, 1.19{1.22, 1.20|1.21, 1.22/1.20, 1.20|1.21, 1.22]|1.22, 1.2 |~=emmcemmn |ccccmmmeee 1.21
3201 .8o| .80, .80| .82, .81 .82, .82| .82, .82{ .83, .82| .83, .BU|eccommeei|ommmmeaa- .82
1.20|1.21, 1.19(1.22, 1.21{1.21, 1.22{1.21, 1.22{1.22, 1.21(1.23, 1.22|~emccccone |ccmmmeeeee 1.21
1121 { .80o{ .80, .79| .82, .81| .81, .82| .80, .80! .82, .81| .83, .82| .81, .81 .83, .82| .81
1l.20|1.20, 1.19{1.20, 1.19]1.21, 1.23]1.22, 1.2511.2%, 1.21}1.21, 1.17{1.21, 1.18)1.22, 1.20 | 1.21
1321 { .8o| .80, .79| .82, .81 .83, .84| .81, .80, .82, .8o| .84, .82| .82, .81i| .83, .82| .81
1.20{1.20, 1.20{1.21, 1.181.21, 1.21(1.22, 1.22]|1.23, 1.23(1.23, 1.21{1.21, 1.21(1.22, 1.20| 1.2
1211 { .80| .80, .78 .82, .81| .83, .84| .81, .80| .81, .81 .83, .84| .82, .82 .83, .82| .81
1.20(1.18, 1.17|1.20, 1.19 [1.21, 1.22{1.19, 1.21|1.22, 1.22(1.21, 1.20|1.21, 1.20(1.22, 1.20| 1.20
1231 { .80f .80, .79| .83, .82|.83, .83, .82, .82l .41, .81| .83, .82| .82, .81| .82, .81 .81
1.20{1.18, 1.20{1.22, 1.21 1.22, 1.231.20, 1.20{l.22, 1.22|1,23, 1.21|1.22, 1.20{1.22, 1.19| 1.21
N 1000 { .80|--- .84, .83| .82, .B1| .80, .80| .84, .83| .82, .81 .82, .82| .82
1.20 ---{l.21, 1.221,20, 1.20|1.20, 1.19|1.23, 1.21|1.22, 1.21(1.23, 1.21 | 1.21
1 1 { .80 .83, .8ul .81, .81| .., .8o| .84, .83 .82, .eal .83, .e1| .82
L¥7 1.20 1.21, 1.22{1.20, 1.20|1l.21, 1.20|1.23, 1.21|1.21, 1.20|1.22, 1.19] 1.21




CORRECTIONS AND ACCURACY

The data of these tests have not been corrected for either tunnel-blockage
effects or sting-interference effects. The axial-force data have not been
adjusted to a condition of free-stream static pressure at the model base. The
angle of attack has been corrected for sting and balance deflections due to aero-
dynamic loads.

Based upon balance accuracy, the maximum values of random errors in the body
force and moment coefficients are:

ACy = *0.01
AC, = *0.01

ACy = *0.008

The estimated accuracies of Mach number and angle of attack are:

A, = *0.01

Na = +0.1°
PRESENTATION OF RESULTS

The effects of variations in Mach number on the static longitudinal aerody-
namic characteristics of the basic configuration 1221 are presented in figure 4.
The effect of variations in nose bluntness on the static longitudinal aerodynamic
characteristics of the basic configuration at Mach numbers of 0.8 and 1.2 is showr
in figures 5 and 6, respectively. In like manner, figures 7 and 8 present the
data for varied fineness ratio, figures 9 and 10 for cone semiangle variations,
and figures 11 and 12 for base-shape variations. The effect of moment-reference-
center location on the variation of pitching-moment coefficient with angle of
attack for configuration 1221 at Mach numbers of 0.8 and 1.2 is shown in
figure 13.

DISCUSSION

In some cases, the data for adjacent angle-of-attack ranges are not contin-
uous. Such discontinuities occur mainly at 45° and 135° angle of attack and are
due primarily to differences in the position of the sting relative to the model.
(See fig. 3.) Discontinuities at angles of attack other than 45° and 135° are




most likely due to a difference in Mach number between the last data point on one
angle-of-attack range and the first data point on the next. (See table III.)

Effect of Mach Number

With the exception of pitching-moment coefficient, variations in Mach number
changed the absolute magnitudes of the aerodynamic coefficients of the basic con-
figuration 1121 (fig. 4). Variations in Mach number had essentially no effect on
pitching-moment coefficient. For the assumed moment reference center, this con-
figuration is slightly unstable up to an angle of attack of about 15° and unstable
from an angle of attack of about 90° to 150°. The configuration is stable at
angles of attack from about 15° to 90° and from about 150° to 180°. The stable
trim point at 180° angle of attack 1s clearly undesirable for a ballistic body
intended to maintain a constant nose-forward orientation throughout its reentry
trajectory.

Effect of Nose Bluntness

The data of figures 5 and 6 at nominal Mach numbers of 0.8 and 1.2, respec-
tively, show that the present type of variation in nose bluntness had no signifi-
cant effects on the static longitudinal aerodynamic characteristics.

Effect of Fineness Ratio

The effects of variations in fineness ratio on the static longitudinal aero-
dynamic characteristics are shown in figures 7 and 8 at nominal Mach numbers of
0.8 and 1.2, respectively. A trend of decreasing stability with increasing fine-
ness ratio is noted at both Mach numbers at angles of attack from about 0° to 45°
with the lowest-fineness-ratio body (A = 0.5) the only one of the three tested
that was stable near a = 0°. At angles of attack up to about 459, the longitud-
inal center-of-pressure location apparently tends to remain near the center of the
spherical nose for the various finenesgs ratios whereas the assumed moment refer-
ence center, at two-thirds of the model length from the nose, has a relative rear-
ward movement with increased fineness ratio. Fineness ratio had no effect on the
undesirable stable slope.of pitching-moment curves near an angle of attack of 180°.

Generally, increases in fineness ratio caused large increases in normal-force
coefficient at both test Mach numbers through most of the angle-of-attack range.
These increases are associated with the increase in planform area resulting from
increased fineness ratio. The ratios of planform area to reference area for con-
figurations 1121, 1221, and 1321 are 0.41, 0.67, and 0.88, respectively. As
expected, however, little effect of fineness ratio on normal-force coefficient
was noted at angles of attack near 0° or near 180°.

Increases in fineness ratio caused reductions in the absolute values of
axial-force coefficient at angles of attack up to about T5° and between 90° and
155°. Generally, these reductions in CA were larger for an increase in fineness

ratio from A = 0.50 to 0.75 than for the increase from A = 0.75 to 1.00.



Effects of Cone Semiangle

The effects of variations in cone semiangle on the longitudinal aerodynamic
characteristics of a blunted cone are shown in figures 9 and 10 for Mach numbers
of 0.8 and 1.2, respectively. Variations in cone semiangle had no significant
effects on the longitudinal stability at the two test Mach numbers.

Increases in cone semiangle caused decreases in normal-force coefficient at
angles of attack up to about 35° (figs. 9(b) and 10(b)). Above this angle of
attack, increases in cone semiangle had little or no effect on Cy at Mach num-

ber 0.8 (fig. 9(b)) but caused decreases in normal-force coefficient at Mach num-
ber 1.2 at angles of attack up to 150° (fig. 10(b)).

Except for angles of attack near O° at both test Mach numbers and near 90°
at M = 0.8, the effect of variations in cone semiangle on CA was generally

small (figs. 9(b) and 10(b)).

Effect of Variations in Base Shape

The data of figures 11(a) and 12(a) show no significant effect of variations
in base shape on the static longitudinal stability although at angles of attack
between 80° and 140°, variations in base shape did cause some differences in the
values of pitching-moment coefficient for a given angle of attack. The present
variations in base shape had essentially no effect on normal-force coefficient
throughout the entire test angle-of-attack range or on axial-force coefficient at
angles of attack up to about 80°. (See figs. 11(b) and 12(b).) Above 80° angle
of attack, variations in base shape had a considerable effect on axial-force coef-
ficient. From angles of attack of 80° to 180°, the absolute value of Cp 1s, in

general, higher for the concave-base configuration than for the convex base, with
the absolute values of CA for the flat-base configuration occurring between

these values.

Effect of Moment-Reference-Center Location

The pitching-moment data of figures 4(a) through 12(a) indicate that varia-
tions in Mach number, nose shape, fineness ratio, cone semiangle, and base shape
had a negligible effect on the stable trim point at an angle of attack of 180°,
The mecment-reference center for these data was located at two-thirds of the body
length from the nose. The variation of Cp with o was recalculated for con-

figuration 1221 for moment-reference-center locations of 58 and 50 percent of the
model length from the nose at the nominal Mach numbers of 0.8 and 1.2. As shown
in figure 13, forward movement of the moment-reference center increased the sta-
bility near 0° angle of attack and caused negative increments in pitching-moment
coefficient at angles of attack up to about 150°. Above an angle of attack of
1500, however, moment-reference-center location has no significant effect on
pitching moment because the normal-force coefficient in this angle-of-attack rang
is almost zero for all test Mach numbers (fig. 4(b)). It is clear that no moment-
reference~center shift would affect the pitching moment near 180° for any of the
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configurations tested, since all models tested at all test Mach numbers have
values of Cy near zero above an angle of attack of about 150°. All configura-

tions tested had a stable trim point at an angle of attack of 1800; such a trim
point is undesirable for a passive entry body from a static stability standpoint
i1f nose-forward entry is intended.

CONCLUSIONS

An investigation has been conducted in the Langley transonic blowdown tunnel
to determine the effects of variations in Mach number, nose bluntness, fineness
ratio, cone semiangle, and base shape on the static longitudinal aerodynamic char-
acteristics of low-fineness-ratio blunted cones. The tests were made at Mach num-
bers from about 0.8 to 1.2 through an angle-of-attack range that generally varied
from 0° to 180°. Reynolds number, based upon the base diameter, varied from

3.67 x 106 to 5.32 x 106.
The results of the investigation indicate the following:

1. The configurations of the present investigation all have a stable trim
point at an angle of attack of 180°, which is undesirable from a static stability
standpoint for a passive entry body if nose-forward entry is intended.

2. Variations in Mach number, nose bluntness, cone semiangle, and base shape
had no significant effect on the static stability but increases in fineness ratio
caused decreases in stability at angles of attack up to 45° with the moment-
reference center located two-thirds of the body length from the nose.

3. Increases in fineness ratio and decreases in cone semiangle generally
caused an increase in normal-force coefficient over most of the test angle-of-
attack range. Variations in nose bluntness and base shape had little or no effect
on normal-force coefficient.

L. At angles of attack up to about 160°, increases in fineness ratio gener-
ally caused a reduction in the absolute values of axial-force coefficient. The
effect of variations in cone semiangle on axial-force coefficient was generally
small, except for angles of attack near 0° at both test Mach numbers and near 90°
at Mach number 0.8. Variations in nose bluntness and base shape at angles of
attack below 80° had little or no effect on axial-force coeffcient. However,
variations in base shape had considerable effect on axial-force coefficient at
angles of attack above 80°. The variation in base shape from convex to concave
caused, in general, a large increase in the absolute value of axial-force coeffi-
cient at angles of attack from 80° to 180°.

Langley Research Center,
National Aercnaulics and Space Administration,
Langley Station, Hampton, Va., April 30, 1963.
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